Store everything: the lie behind data lakes

I hope the data lake idea has passed the peak of its current, unfortunately large, round of hype. Gartner came down on the concept pretty hard last year, only 4 years after the term was coined by Pentaho's James Dixon. More recently, Michael Stonebraker illustrated many of the same concepts from the perspective of a data management professional (note the excellent comment by @datachick). The frustration of conscientious data professionals with this concept is palpable.

the initial worry - wasted effort

The idea of a data lake is that we establish a single huge repository to store all data in the enterprise in its original format. The idea is that the processes of data transformation, cleansing, and normalization result in loss of information that may be useful at a later date. To avoid this loss of information, we should store the original data rather than transforming it before storing it.

This is a relatively noble goal, but it overlooks the fact that, done correctly, these processes also introduce clarity and reduce false signals that are latent in the raw data. If every data analysis project needs to recreate the transformation and cleansing process before doing their analysis, this will result in duplicated work and errors. Long live the datawarehouse.

The deeper problem - adding information

In my reading, this sums up the usual justification for data lakes as well as the source of frustration usually expressed by data professionals. But I think there is another issue with data lakes that is often overlooked: that the data lake approach implies that transformation is an information-negative operation. That transforming necessarily discards data, and therefore information, from the original data set. It is a response to a common frustration with datawarehousing - that the data in the warehouse doesn't quite answer the question we are trying to ask and if only we could get at the source data we could reconstruct the dataset so as to be able to answer the problem. Sometimes true.

Usually, however, there are real issues with this approach. The transformation from raw data to datawarehouse (or other intermediate representation)  may remove information, but it adds other significant information to the source data. Specifically, it adds or acts on information about what data can go together and how it can be combined, how the data collection method may have influenced the data, sometimes weights data according to external information about its quality, might add interpolated data, etc. Usually this additional information is not stored along with the source data set. It's rare that it's stored in an accessible way along with the resulting data in a datawarehouse. I've seen almost no mention of maintaining this type of information in the context of a data lake. It is simply lost, or at best difficult to access.

Existential questions - If a tree falls...

Which brings me to the big lie around data lakes: storing everything. If a measurement is never taken, is it data? How many measurements are not taken for each measurement that is? Can a data lake store these un-measured measures?

The issue in data analysis, I find, is not so much that data to answer our question was collected but discarded. Rather, the problem is that the data was never collected, the measurements never taken, or taken improperly for use in addressing the question now at hand. Like the traveller in Frost's poem, we have limited resources. Collecting one measure is a road that precludes collecting other measures due to these limits. Storing everything, or even most things, is not possible.

Two roads diverged in a wood, and I—
I took the one less traveled by,
And that has made all the difference.
— Robert Frost, "The Road not Taken"

Later, we often wonder if taking the other road would have allowed us to answer our current questions, but we can't go back and make different decisions about measurement. Data lakes don't change that. Maybe data lake vendors should switch to selling time machines.